附生藻类。

本文从养殖池塘氮循环入手,试着探讨养殖池塘水体氨氮与亚硝酸盐的管理。一、养殖池塘的氮循环在养殖池塘生态系统中,氮循环是养殖池塘生态系统物质循环中重要的一部分,含有蛋白质的饲料输入成为系统含氮物质最重要的来源,饲料的输入一方面为养殖的对象提供饵料,满足了养殖动物在生长过程中对营养的需求,剩余饵料的分解也为池塘的浮游生物生长提供了营养物质,促进了养殖水体中的藻类和浮游动物的生长,间接为养殖对象提供了饵料,促进了养殖动物的生长。另一方面,在投喂饲料的池塘中,饲料中的蛋白质成为养殖池塘中氮的主要来源,随着投喂饲料的增多,养殖对象机体新陈代谢过程中未利用氮的排泄和残饵粪便中蛋白质的分解,水体中氨氮、亚硝酸盐的积累日益增多,超出了养殖生态系统的自净能力,最终导致养殖水体水质恶化,降低了鱼虾的生长速度和对病原的抵抗力,加上其他因素的叠加效应,病害增多,也在制约着养殖效益的提高。养殖池塘氮循环的示意见图1。图1养殖池塘氮循环示意如图1所示,在养殖过程中,养殖动物本身的排泄以及沉积在池底的残饵、粪便等含氮有机物分解产生的氨氮成为养殖池塘水体中氮的两个主要来源。养殖水体中的氮存在的形态主要由有机态氮和无机态氮组成,有机态氮主要包括蛋白质、氨基酸、肽等,最终由氨化细菌分解成氨态氮。无机态氮主要包括溶解态氮气、氨氮、亚硝酸盐氮、硝态氮。各种无机态氮之间的转化主要是由硝化细菌和硝酸还原细菌来完成的。硝化细菌大部分为化能自养菌,只有少数为异养菌,均为好氧菌,硝化反应在pH为7.8~8.9、温度为25~35℃时进行得最快。硝酸还原菌大部分为异养菌、只有少数为自养菌,均为厌氧菌,在厌氧环境中,通过将硝态氮经过一系列中间价态的产物(NO2-、N2O等)还原至氨(NH3),也可以经脱氮作用形成气态氮从养殖水体中逸出。含氮物质从水体的移除,主要包括转化为养殖动物机体蛋白,通过养殖对象的捕捞从水体中移除;氨氮从水体中的逸出;脱氮作用生成大气氮从养殖水体中逸出;残饵粪便、藻类死亡后沉积到池底,养殖周期未能完全分解,养殖间隙清淤从养殖系统中移除等方式。二、养殖池塘水体氨氮过高的危害在养殖生产中,通常测得的氨氮是指池塘水体的分子氨和离子氨的总和,两者之间存在着一个动态平衡关系,分子氨和离子氨各自占氨氮的比例主要受pH和温度的影响。对水生动物危害较大的是分子氨,而离子氨目前主流观点认为基本是无毒的。在养殖实际操作中,因为分子氨不能直接测定,只有通过测总氨氮的方法来测算水体中分子氨的含量,不同pH和温度下分子氨占总氨氮的比例可以通过相关的换算公式或者查阅相关表格求得。氨氮过高的危害主要有以下几个方面:1.妨碍水生动物体内氨的排泄。大部分淡水鱼类通过鳃直接将氨排到体外,水体氨氮浓度过高,鱼类排氨不易,最终影响鱼的摄食,生长速度下降。2.腐蚀鳃组织,破坏鳃组织的黏膜层,增大了鳃被各种病原侵染的机会。3.影响鳃的呼吸,由于对鳃组织的破坏,影响了鳃组织和水体之间的气体交换,使得鳃对水体溶氧的吸收和转运能力下降。4.氨对渗透压的影响,水体中高浓度的氨增加了鱼类对水的渗透性,从而降低了体内离子的浓度。三、养殖池塘水体亚硝酸盐过高的危害亚硝酸盐的毒性主要体现在影响血液对氧的运输。亚硝酸盐能够与血液中的血红蛋白结合,将血红蛋白中的二价铁氧化为三价铁,从而使血红蛋白失去运输氧的能力,导致鱼体相关组织和器官的缺氧,影响器官的正常生理功能。亚硝酸盐还可以使小血管平滑肌松弛而导致血液淤积。长期生活在亚硝酸盐高的水体环境中的水生动物容易出现生长速度缓慢、对病原的抵抗力不强、易患病等情况。一般而言,养殖水体的NO2-不应高于0.1毫克/升。四、养殖池塘水体氨氮、亚硝酸盐过高的调控措施在高密度精养池塘的养殖水体中,氨氮和亚硝酸盐的管控一直都是一个比较棘手的问题,仅用一种方法很难在整个养殖周期中非常有效地将水体中的氨氮和亚硝酸盐控制在较为理想的水平,往往需要几种手段的综合运用。处理方式一般有以下几种:1.换水改善水质最快、最有效的方法就是换水,但前提是水源水的质量要显著优于养殖池塘水体。否则,换水便失去了意义。因此,处理氨氮和亚硝酸盐过高的问题,换水仅仅适用于有充沛的水源且水源条件好的池塘。在实际生产中,随着工农业污水的排放,很多池塘的水源水不具备这样的条件。2.科学合理地投喂饲料根据不同养殖对象不同生长阶段的营养需要,对投饵率进行优化,合理地制定投饵率,不仅有利于饲料的充分吸收利用,减少饲料中未完全利用的蛋白质和糖类转化成的脂肪在肝脏的积累,降低肝胆的负担,同时还可以降低未利用的氮的排泄,一定程度上减少养殖水体中氨氮和亚硝酸盐的来源。3.多开增氧机特别是晴天中午多开增氧机,一方面是促使水体中的氨更多地从水体逸出,另一方面,及时偿还池塘底部的氧债,维持池塘底部的好氧环境,促进有机物的分解和藻类对氨氮的利用。4.施磷肥,以磷促氮这种处理的原理就在于,大多数情况下磷元素是限制养殖池塘初级生产力的关键因子,通过施磷肥,能够提高养殖池塘浮游植物的丰度,通过浮游植物对氨态氮和硝态氮的吸收利用,来降低水体氨氮和亚硝酸盐的水平,通过施磷肥来降低池塘氨氮和亚硝酸盐仅仅适用于水质较瘦的池塘,在水质较肥的池塘,由于整个池塘养殖生态系统的限制,浮游植物的丰度不可能再大幅提高,施磷肥也就失去了意义。5.添加硝化细菌处理在自然环境中,硝化细菌的繁殖速度较慢,自然环境中需20多小时繁殖一代,远远低于异氧菌。通过人为添加硝化细菌,补充池塘生态系统中硝化细菌的不足,通过增强硝化作用来降低池塘氨氮和亚硝酸盐的水平。在实际使用的过程中,由于硝化细菌大多是自养需氧菌,在增殖过程中对环境要求比较高,需要水体环境中有一定的溶氧、碱度及碳源等,生长速度较慢,一般需提前几天使用。由于硝化菌对水体环境的要求较其他有益细菌要苛刻很多,对不同养殖水体的环境适应能力较差,影响了在使用过程中水质处理效果的体现。6.螯合剂腐植酸钠、木质磺酸钠等螯合剂,通过自身官能团对水体中氨氮和亚硝酸盐的螯合,来达到降氨氮和亚硝酸盐的目的。使用该方法处理养殖水体氨氮和亚硝酸盐过高的问题时有一定的效果,缺点是使用后效果持续时间短,易反弹。7.物理吸附对于氨氮偏高的池塘,可以采用沸石粉吸附处理。主要的原理就在于沸石粉自身具有独特的结构,沸石粉的晶体矿物骨架中具有很多的大小均一的通道和空腔,形成了表面积很大的孔穴,这种多孔结构决定它具有很强的吸附性。可吸附大量的有极性的分子(如氨、二氧化碳、硫化氢等),用于水质改良最好使用180目至200目规格的优质斜发沸石粉。8.强氧化剂底改,化学增氧剂配合使用该方式降氨氮和亚硝酸盐的原理是通过强氧化剂改底,提高池塘底部的氧化还原电位,同时将池塘底部部分有机物氧化,减少池塘氨氮的来源;另一方面,通过补充氧气,为池塘的硝化作用提供更充足的氧气,促进硝化作用的进行。该方法的效果持续时间较使用螯合剂的方法要长。9.中毒处理当养殖水体氨氮或亚硝酸盐偏高,出现中毒情况,可以首先全池使用有机酸解毒剂,降低鱼类的应激,再使用沸石粉吸附水体中的氨氮或使用腐植酸钠等螯合剂螯合水体中的亚硝酸离子,作为应急处理,快速降低水体中氨氮和亚硝酸盐的浓度,缓解鱼虾中毒症状,当天晚上要使用化学增氧剂增氧。接下来再按正常步骤处理氨氮和亚硝酸盐偏高的问题。在处理养殖水体亚硝酸盐过高、导致鱼虾中毒的情况时,往养殖水体中撒食盐可降低亚硝酸盐的毒性,相关研究表明氯离子(Cl-)可降解亚硝酸盐的毒性。这是由于亚硝酸根离子(NO2-)和氯离子(Cl-)都需要通过鳃小板上的氯细胞才能进入鱼体,NO2-因Cl-在氯细胞吸位点上的竞争而增加了进入鱼体的难度,氯离子(Cl-)从而起到了降低亚硝酸盐毒性的作用。需要指出的是,在养殖过程中,用于分解养殖池塘有机物的细菌制剂得到广泛的使用,在使用的过程中,有时候反而会使养殖池塘氨氮水平上升,这是因为在养殖的中后期,细菌分解的残饵和粪便等有机物的C/N的比值较小,在分解有机物过程中产生的氮未能被细菌完全利用,在分解过程中伴随着氮的矿化。五、总结养殖池塘氨氮及亚硝酸盐的管理,需从养殖周期一开始就要有这方面的意识,根据池塘情况、养殖水平、市场情况合理设计养殖密度和养殖模式,很多时候养殖池塘最大的产量未必是最经济的产量,因地制宜,选择合适的放养密度,才能获取最大的经济效益。在养殖过程中,池塘水体氨氮和亚硝酸盐的水平,很大程度上取决于饲料投入的多少和饲料的利用率。在养殖过程中应选择优质、蛋白利用率高的配合饲料,制定科学合理的投喂策略,以提高饲料的利用率,减少未利用蛋白氮对水体的压力。在养殖过程中,寄希望于1~2次调水、改底来解决整个养殖周期的氨氮、亚硝酸盐偏高的问题是不切实际的,需要自始至终地坚持,多管齐下,才能在整个养殖周期中将氨氮和亚硝酸盐的水平控制在合理范围内,使养殖水体的水质处于有利于养殖对象生长的状态,保证养殖生产的顺利进行。(出处:科学养鱼作者:无锡渔愉鱼科技有限公司李样红)

1.提供高营养天然饵料小球藻蛋白质含量高,可作为单细胞蛋白(SCP)的一个重要来源,同时富含人和动物所必需的多种氨基酸、维生素等营养成份,而且它适应能力强,淡水、海水都能够快速生长,所以在水产养殖中,小球藻经常作为一种高营养天然饵料加以培养,或直接泼洒到养殖水体中,供滤食性的水生动物食用。

①透明度的测定方法:

1.外观

由于水生植物的光合作用受光线强弱的影响,池中的溶解氧也随光线的强弱而变化。一般晴天比阴天的溶解氧量高,晴天下午的含氧量最高,上层池水的溶氧呈饱和状态。黎明前溶解氧含量最低,这时,无增氧设备的中等产量的池塘,一般都有浮头现象。在低气压、无风浪、水不流动时的溶解氧量较低,在气压高、有风浪、水流动时的溶解氧量较高。

小球藻在水体中生长,不仅能释放氧气,促使亚硝酸盐转化为硝酸盐,还能直接利用氨态氮和硝态氮,使得水体中的氨氮、硝酸盐、亚硝酸盐含量大大降低。

“肥”就是浮游生物多,易消化种类的数量多;

②小球藻培养液的稀释液。该产品是将培养好的小球藻培养液稀释一定倍数再进行包装、出售,东西是真的,就是含量低。这种产品一般颜色比较浅,底部沉淀很少(少于2毫米厚)。

2.生物因素

3.pH值一般小球藻的培养液pH在7.0~8.2,可用pH计或者pH试纸测试,不在这个范围的,就是假的。

养鱼水体的氮、磷含量过高,浮游生物数量多,水体往往就呈蓝绿色或绿色带状或云块状水华,也就是所说的蓝藻水华,是富营养化的特征。

2.提高水体溶氧量小球藻是光能自养型生物,它可与水生动物形成一个物质循环系统,即水生动物呼出的二氧化碳可供小球藻生长,而小球藻产生的氧可供水生动物呼吸用,使得水生动物有更充裕的氧气去生长、活动。杨佳娟等在不同温度下的实验,证明小球藻在常温下能够比较明显地提高水体中的溶氧量。水体里培养了小球藻后,在短短的8小时内,正常的水温(20~30℃)下,水中的溶氧浓度就增加了2倍,可见小球藻确实能提高水体中的溶氧量。

③pH值对鱼类健康的影响:

(1)不染色:滴一滴培养液到载玻片上,直接用放大400~1000倍的显微镜观察,小球藻是一个个的圆形或椭圆形绿色体,每个视野大概有几十个。

高等水生植物。

3.降低水中氨氮、硝酸盐、亚硝酸盐含量目前,在池塘养殖水体中,亚硝酸盐含量偏高现象已相当严重。不仅导致鱼、虾等抗病力降低,易招致各种病原菌的侵袭,严重时甚至造成养殖对象突然大面积死亡,给养殖户造成严重的损失,极大地限制了水产养殖业的发展,所以必须加以预防。

在淡水鱼类养殖生产过程中,养殖水体的水质条件是养殖成败的关键因素之一,因为,水是鱼类及其他养殖生物的生存介质,水为这些生物提供了一个立体生存、生活、繁衍的空间。当然,不同的鱼类对水环境的一些理化因素的要求存在着差异,所以,了解养殖鱼类对水环境的要求以及水体中多种因素之间互相联系与制约的关系,有助于在养鱼技术上采取合理的措施,改善鱼类的生活环境,提高生产效益。

③前两种的结合。该产品是将小球藻培养液稀释后再调色增稠,看起来跟真的没多大区别。这个单凭外观不太好区别,要用到后边的区别方法:显微镜观察。

溶解盐类为鱼类及其他水生生物提供营养物质,淡水中的钙是构成鱼类骨骼的主要物质,镁是叶绿素的主要成分,各种藻类均需镁。碳酸盐类是组成生物体不可缺少的成分。

真货:嫩绿色或绿色半透明液体,底部有一层沉淀(约3~5毫米厚),瓶壁有少量绿色附着物,如果时间超过1个月,底部沉淀增多,上部液体略透明,拿瓶子来回颠倒几次,能恢复到黄绿色半透明状态。

碳酸盐和磷酸盐能调节酸碱度,对水体的pH值有调节作用,当水中游离的二氧化碳严重缺乏时,绿色植物可以从碳酸氢盐中吸取光合作用所需的二氧化碳。

硝酸盐是氮元素在自然界循环过程中的产物之一,水体中含氮化合物存在的主要形式为:有机氮和氨态氮。氨化作用是由氨化细菌或真菌将有机氮分解成为氨与氨化合物,氨态氮在硝化作用下转化为硝酸盐氮,这是个耗氧、耗碱度的过程,亚硝态氮是其中不稳定的中间形式,对养殖生物具有很强的毒性。溶氧充足时,经硝化作用可转化为无毒的硝态氮,在缺氧条件下则经反硝化作用,转化为氨氮。

透明度。

(2)颜色、透明度:正常的小球藻液体应该是嫩绿色或者绿色的半透明液体,藻体在阳光下是绿色的,长时间不见阳光,颜色会变暗。如果胀气狠,藻体会漂浮到液体表面;略胀气的藻体会沉降到底部;如果保藏期间见光,藻体会附着到瓶壁上;会出现液体颜色变浅的现象,用力摇晃会恢复到黄绿色或者绿色。

对于湖泊、水库等大水面养鱼来说,高等水生植物中的很多种类都是草食性鱼类的良好天然饵料和草上产卵类型鱼类的产卵场所,更重要的作用是,高等水生植物是净化水质、维护生态平衡的重要生物类群。

小球藻(Chlorella)为绿藻门、小球藻属、普生性单细胞绿藻,是一种球形或椭圆形单细胞藻类,直径3~8微米,是地球上最早的生命之一,出现在20多亿年前,基因始终没有变化,其光合作用能力非常强,是其他植物的几十倍。本文主要探讨了小球藻在水产养殖中的作用,并介绍了小球藻真假、优劣产品的鉴别方法。

在渔业生产中,pH值是反映水体水质状况的一个重要指标,其重要性不仅在于指示水体本身受影响的程度,其值的变化对水体中生物的、化学的或物理的过程也将产生一定程度的影响。

由于小球藻用途广、效果好,现在市场上有很多相关产品,这里介绍几个简单的识别真假、优劣的方法,供大家参考:

拿一个直径25厘米的黑白相间的圆盘,从表层水向下沉,注视着它,直至看不见为止,记录圆盘下沉的深度,这就是水的透明度。

假货:无味、腥味、臭味,或者其他气味。

2~3米深的水体,上、下层的水温一般相差2℃左右。

4.看使用效果在晴天太阳好的上午,把小球藻泼洒到池塘里,如果连着几天都是晴天,气温在15~35℃,那么2~5天后,观察池塘水,真货:水质清爽,略显绿色,看起来很有活力;假货:没什么变化,水质变混。

浮游动物是漂浮的或游泳能力很弱的小型动物。浮游动物也被称为“经济水产动物”,因为我国特有的“四大家鱼”,在鱼苗阶段均以浮游动物为食,体长1厘米左右的鱼苗生长的快慢和成活率高低取决于水体中轮虫数量的多寡。在鲢、鳙的鱼种、成鱼阶段,浮游动物在食谱中仍然占有重要位置,也是水体中上层其他一些鱼类和其他经济动物的重要饵料,对渔业的发展具有重要意义。常见的浮游动物,如多种原生动物、轮虫、枝角类、桡足类等,它们不仅是鱼苗、鱼种的适口饵料,也是滤食性鳙鱼的主要食物。

假货:瓶子一点都不胀气,甚至是瘪了的。

①水温的变化特点:

2.微观小球藻直径3~8微米,单体肉眼是看不到的,只能用显微镜观察:

水温直接影响池水环境中细菌和其他水生生物的代谢强度,在最适温度范围内,一方面细菌和其他水生生物生长繁殖迅速,同时细菌分解有机物质为无机物的作用加快,因而能提供更多的无机营养物质,经浮游植物光合作用吸收利用,制造有机物质,使池中各种饵料生物加速繁殖。

真货:青草香味,略带点腥味。

混浊度是指水中混有各种微细的颗粒和浮游生物所造成的混浊程度。夏季由于浮游生物大量繁殖而使透明度变小;冬季天气转冷,水温下降,浮游生物大部分死亡、沉底,因而透明度增大。

①用染色剂调制的。该产品为透明的绿色液体,底部没有沉淀;若加了增稠剂或者稳定剂的,也能呈现半透明状态,整瓶看起来颜色一样,而真的下面颜色略重。

①亚硝酸盐升高的原因:

④用其他的微生物代替。该产品使用其他的类似小球藻的微生物代替,这个外观也不太好辨别,只能用显微镜或者闻气味。

养鱼水体中的微生物包括细菌、酵母菌、霉菌等,对养鱼水体来说,细菌最重要。一般情况下,养鱼的水体,尤其是池塘的细菌数量很大,它们不仅在池塘物质循环中起着重要作用,而且也是鱼类和其他水生生物的重要食料。细菌不但能被浮游动物摄食,而且群聚体还可以被鲢、鳙鱼直接摄食。

(3)气味:打开包装后闻气味。

水温的变化与鱼类病害的发生关系很大,在水温升高的情况下,各种病原微生物繁殖速度加快,从而易导致疾病流行。如草鱼出血病一般发生在温度升高时期。在高温季节,池水中有机物分解的速率加快,水中寄生虫、细菌等有害生物的代谢速率也加快,故大量繁殖,恶化水质和底质,易导致鱼类多种疾病发生。较低温度也能诱发一些鱼类的病害,如水霉病和小瓜虫病,均在早春水温较低时流行。

5.提高水生动物的抗病能力小球藻生长因子,也叫小球藻精,是细胞活性物质,包括氨基酸、核酸、多糖、多肽、蛋白质、酶、维生素、矿物质、“神秘成分”,被称为“类荷尔蒙”。国外对其生理功能有较多的研究,其生理功能包括激活淋巴细胞,可增强水生动物机体免疫能力;活化机体细胞,使幼苗生长发育加快,抵抗外来疾病的入侵;促进机体受伤组织修复;能缓解有机物、重金属等中毒的水生动物病状。

溶解盐类。

假货一般都有以下几个特点:①显微镜下看不到东西。②数量很少,不到10个。③杂菌很多,杆状的、点状的,甚至还有长长的丝状的,前2种还略好点,如果发现有丝状的,很可能感染了其他的有害藻类,最好不要使用。④圆形或者椭圆形的,但不染色的情况下是蓝色或者其他颜色的,这是感染了其他藻类或者菌类,最好不要使用。

水温高于32℃时,摄食量同样会降低。

一、小球藻在水产养殖中的作用

亚硝酸盐。

4.改变水体pHpH是水产养殖中的一个重要水质参数。中国渔业水质标准规定淡水pH的范围为6.5~8.5,一般认为最适宜水产养殖的是弱碱性水体,pH在7~8.5。小球藻能改善水体的pH,把偏酸的水质提高到适合水生动物生长的范围内,而且又不会偏高。

鱼类最适宜在中性或微碱性的水体中生长,即pH值为7.5~8.5,在pH值为6~9时,仍属于安全范围;如果pH值低于6或高于9,就会对鱼类造成不良影响。当鱼类在酸性条件下,会使血液中的pH值相应下降,削弱其血液载氧能力,造成鱼自身患生理性缺氧症,引起组织缺氧,呼吸困难,活动能力减弱,新陈代谢强度降低,摄食量减少,对饲料的消化率下降,生长缓慢;还可引起鱼鳃组织凝血性坏死,黏液增多,腹部充血发炎。若水体pH值低于4.4,会引起鱼类死亡;低于4以下,水中的鱼全部死亡。

(2)染色:取一滴小球藻培养液,滴到载玻片上,烘干用结晶紫染色剂染色约30秒,用水小心冲洗,再烘干,滴上香柏油在高倍镜下观察,小球藻呈现紫色的圆形或椭圆形。

养殖水体的透明度主要随养殖水体的混浊度改变。

二、小球藻的优劣鉴别

④氨氮在养鱼水体的限制浓度:

(1)胀气:小球藻是生命体,有活性,正常生长期会吸收二氧化碳,释放出氧气及其他代谢产物,因此真货:装小球藻的瓶子(密封),略胀气,如果保藏期间见了光且温度(15~35℃)适合生长,胀得会更厉害点,整个瓶子鼓鼓的。

水中亚硝酸盐浓度积累到0.1毫克/升后,鱼红细胞数量和血红蛋白数量逐渐减少,血液载氧能力逐渐减低,从而造成鱼类慢性中毒,此时鱼类摄食量降低,鳃组织出现病变,呼吸困难、骚动不安或反应迟钝,严重时则发生暴发性死亡。

假货:假货的制作一般多为4种形式。

在养鱼水体中,养殖密度过大,池水经常缺氧,水体中有机物含量过高,也是很容易引起亚硝酸盐含量升高的原因。当水体总氨浓度达高峰3~4天后,亚硝酸盐浓度也相应升高并达到高峰。

一年之内,一般1~2月份水温最低,7~8月份水温最高。

高等水生植物亦称“水生维管束植物”或“水草”。这类植物有芦苇、菰等挺水植物,荇菜、菱等浮叶植物,浮萍等漂浮植物,菹草、轮叶黑藻、苦草等沉水植物,它们一般出现在浅水湖泊或水库沿岸。

在温度变幅较大的春、秋季节,由于浮游生物和细菌活动力的减弱,使正常的氮循环受到破坏,人工所施的肥料、动物粪便、死亡藻类及残剩的饵料因水体老化缺氧,被分解成为亚硝酸盐。

养鱼的池塘水体,尤其是鱼苗、鱼种培育池,一般是要控制高等水生植物生存量的。因为它们吸收水中大量的营养物质,遮蔽阳光或妨碍通风,影响浮游生物的繁衍,也不同程度地影响池塘的温度和溶氧状况。因此,除种草养鱼种外,池塘养鱼的要求是要清除池中的高等水生植物和杂草。

当水温降到15℃以下时,摄食减少,生长减慢。

水中的钾、钙、镁、钠、氯等离子和盐类的数量约占水中溶解盐类总量的90%以上,但不同水体中各种溶解盐类的含量却是千差万别的,淡水的含盐量一般小于1.0克/公斤。淡水中溶解盐类主要具有维持水体渗透压稳定的作用。

天然水中的氨氮主要来自于含氮有机物在微生物作用下的分解,即氨化作用;养鱼水体的氨氮主要来源于饲料和肥料,由于投饵、施肥及鱼类排泄物和残饵在水体中的增多,导致氨氮浓度升高。

②亚硝酸盐对鱼类的毒害作用:

②pH值的变化规律:

②溶解氧的变化规律:

一天之内,一般在日出之前水温最低,下午2~3时水温最高。

pH值的不适宜会破坏水体生产的最重要的物质基础——磷酸盐和无机氮合物的供应。如果池水偏碱性,会形成难溶的磷酸三钙;偏酸性,又会形成不溶性的磷酸铁和磷酸铝,这都会降低肥效。在pH值为8.5时,藻类生长状况最好,水体固碳能力最强,酸碱度稳定性最高;pH值为9.5时,藻类生长最差,一般pH值小于4,水体中有许多死藻和濒死的藻细胞。

另外,在浅池施用铵态氮肥时,必须根据水质的pH值等状况,掌握合适的施肥量,防止施用量过多而使水中氨的含量达到危害鱼类的程度。

④溶解氧的高低对鱼类的影响:

②溶解盐类对鱼类等水生生物的作用:

硫化氢是养殖池塘中的硫化物还原菌在厌氧条件下分解硫酸盐和异氧菌分解有机物产生的。在缺氧条件下,硫化氢的来源途径有二,一是含硫有机物经过嫌气细菌分解而成;二是水中硫酸盐丰富,由于硫酸盐还原细菌的作用,使硫酸盐变成硫化物,在缺氧条件下进一步生成硫化氢。在杂草、残饵堆积过厚的老塘,也常有硫化氢产生。

溶解在水中的氧气称为溶解氧。鱼类生活在水中,用鳃进行气体交换,故水中溶解氧的多少直接影响着鱼类的新陈代谢。

养殖水体硫化氢的浓度从0.1毫克/升开始升高时,鱼类出现不安定状态,食欲下降,饵料系数增加,抵抗力减弱;浓度升至0.5~0.8毫克/升时,会严重破坏鱼的中枢神经。

(作者:宋晓民 “水花鱼”配图并内容略有改动)

磷酸盐对鱼类不致发生多大影响,但这类物质一般在池塘中的含量不多。在这种情况下,往往会使鱼池中的生物,尤其是藻类的生长受到限制,鱼饵生物量下降,对鱼类生长不利。因此,在池塘中适当施加磷肥,将有助于提高鱼产量。

①pH值是重要的综合水质指标:

④pH值对水体生物生产力的影响:

相对于氨毒害,亚硝酸盐对鱼的毒性较小,但由于氨氮的转化速度较快,使得亚硝酸盐的问题最为突出。当亚硝酸盐达到一定浓度,易引起鱼类中毒,而使血液里高铁血红蛋白的含量升高,载氧能力下降,造成组织缺氧,神经麻痹,甚至窒息死亡。

氨氮。

pH值的日变化规律是,一般情况下,日出时pH值开始逐渐上升,至下午17:30左右达最大值,接着开始下降,直至翌日日出前至最小值,如此循环往复,pH值的日正常变化范围为1~2,若超出此范围,则水体有异常情况。

在养鱼的水环境中,生物因素与鱼类养殖有着最直接的关系。养鱼水环境的生物除鱼外,还生活着种类繁多、形态各异的其他水生生物,主要包括高等水生植物、底栖动物、附生藻类、浮游生物和微生物等。这些水生生物在同一养鱼水环境中,或在不同的养鱼水环境中,其种类、数量可能差异很大,或对其养鱼水环境产生不同的作用。但总体来说,它们中的许多种类是鱼类的天然饵料,是鱼类的重要生态条件。有些种类可能对养鱼是不利的,或者和鱼类争夺营养,或者直接危害饲养鱼类,或者引起水质变坏等。鱼类养殖生产中,控制有害生物,维护有益生物,是改善养殖鱼类生态环境的重要管理技术内容。

透明度是表示光线透入水中的程度。

③透明度的作用:

③水温对池塘物质循环的影响:

超过10米水深较深的水库、湖泊,上、下层水温温差很大。

氧气溶解到水中主要通过水—气界面的氧气扩散和水中植物光合作用产生氧这两种方式。池水中90%以上的溶解氧是靠水中植物的光合作用产生的,除非在有较大风浪的条件下,一般水—气界面的氧气扩散作用相对较小,少部分源于大气、风浪的溶解作用。水中溶解氧的多少与水温、时间、气压、风力、流动等因素有关。

从国外引进的淡水白鲳的生长温度为21~32℃,最适温度为28~30℃,低温临界温度为10℃。当水温降至12℃时,大部分鱼失去平衡,在16℃时才能正常吃食。

②影响透明度的因素:

水体中的硫化氢通过鱼鳃表面和黏膜可很快被吸收,与组织中的钠离子结合形成具有强烈刺激作用的硫化钠,并还可与鱼血液中的铁离子结合,使血红蛋白减少,血液丧失载氧能力,同时可使组织凝血性坏死,降低血液载氧功能,严重影响鱼类的健康生长,有的甚至导致鱼呼吸困难而大批量死亡。中毒鱼类的主要症状为鳃呈紫红色,鳃盖、胸鳍张开,鱼体失去光泽,漂浮在水面上。

硫化氢。

⑤水温对鱼类健康状况的影响:

水体中氨氮是以非离子氨和铵离子两种形式存在的化合氨。离子态氨氮与非离子态氨氮这两种形式在水体中可以互相转化,所以,水中氮化合物的多少,可作为水体受到含氮有机物污染程度的指标。

1.理化因素

“嫩”就是水色鲜嫩不老,也是易消化浮游植物较多、浮游植物细胞未衰老的反映,如果蓝藻等难消化种类大量繁殖,水色呈灰蓝或蓝绿色,或浮游植物细胞衰老,均会降低水的鲜嫩度,变成“老水”;

③溶解氧的消耗途径:

当水中的溶氧量充足时,鱼摄食旺盛,消化率高,生长快,饵料系数低。当水中的溶氧量过少时,鱼的正常活动就会受到影响,严重缺氧时可引起鱼的浮头、泛塘。

池水中氨的含量一般较低,水生生物和鱼类排泄的氨被大量池水稀释,同时硝化细菌将其转化为硝酸盐,因此不会对鱼类带来多大影响。但养鱼密度太大时,氨的浓度就高,鲤科鱼类氨氮控制在0.05毫克/升以下比较安全。

酸碱度亦称pH值,或称氢离子浓度指数、酸碱值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。

主要是指淡水中的碳酸氢根、碳酸根、硫酸根、氯离子等阴离子和钾、钙、镁、钠等阳离子及盐类,如碳酸盐、磷酸盐、硝酸盐等。

硫化氢是带有臭鸡蛋气味的可溶性有毒气体。硫化氢在有氧条件下很不稳定,可通过化学或微生物作用转化为硫酸盐,因在底层水中有一定量的活性铁,故可被转化为无毒的硫或硫化铁。

在养殖鱼类的水环境中,对鱼类影响最主要的理化因素包括:水温、溶解氧、透明度、pH值、氨氮、硫化氢及适量的溶解盐类等。

实践表明,养殖水体亚硝酸盐含量与鱼病的发生在一定程度上呈现相关关系,养殖水体亚硝酸盐含量过高一直是养殖过程中比较棘手的问题。

养殖池塘水环境中的溶氧量,在某些条件下,随水温升高而降低;但水温上升,鱼类代谢增强,呼吸加快,耗氧量增高,加上其他耗氧因子的作用增强,因而促进了池塘缺氧现象的发生,这在夏季高温季节特别明显。

水温还影响鱼类的性腺发育和产卵的开始时间。在我国南方与北方,多种鱼类亲鱼开始产卵时间相差较大,但产卵的水温一般都要达到18℃时才开始。

根据看水色的经验,认为肥水具有“肥、活、嫩、爽”的表现。

③氨氮对鱼类的毒害:

②硫化氢对鱼类的毒害作用:

离子铵对鱼的毒性较小,而分子氨是剧毒物质,即使在0.01毫克/升的低浓度下,对鱼类也会产生毒性,并且随着pH值的升高,毒性增强。非离子氨和氧原子与血红蛋白结合会发生“竞争”,从而降低鳃组织吸收和运输氧的能力,造成鱼类组织缺氧;分子氨还会对鱼鳃表皮细胞造成损伤,影响鱼类进食并降低其免疫力。在缺氧的情况下,氨的积累增多,当达到一定浓度时,就会使鱼减少摄食量,生长缓慢;高浓度时,会造成鱼类中毒、死亡。

鲢、鳙、草、青等鱼,在水中含氧1毫克/升时开始浮头,当低于0.4~0.6毫克/升时就会窒息死亡。鲤、鲫鱼的窒息范围为0.1~0.4毫克/升。

水温。

微生物。

在鱼类养殖水体中,pH值直接或者间接地影响着鱼类的生长、发育、繁殖以及病情等。当其值超过适宜限度时,鱼体的正常呼吸受到影响,造成新陈代谢下降、生长发育停滞等一系列异常变化。pH值的过度降低或升高,均会直接危害鱼类,引起鱼类死亡;即使有时不致死,但由于其值超过鱼类的忍耐程度,导致生理功能紊乱,也会影响其生长或引起其他疾病的发生。

“活”就是水色不死滞,随光照和时间不同而常有变化,这是浮游植物处于繁殖盛期的表现;

①溶解盐类在水环境中的功能:

适宜溶氧量在5~5.5毫克/升或更高,但溶解氧过饱和也可能会使鱼苗产生气泡病。一般养殖水体中,连续24小时内,16小时以上的溶氧量必须大于5毫克/升,其余时间应不得小于3毫克/升。

养鱼池水体中的溶解氧有80%~90%被消耗于浮游生物及底栖生物呼吸、有机物分解,而鱼类利用的占5%~15%。

pH值日变化规律是因为浮游植物进行光合作用需要吸收二氧化碳,从而引起水体二氧化碳变化,二氧化碳含量的高低又影响pH值的日变化。掌握pH值的日变化规律,对鱼类养殖具有重要的指导意义和利用价值。如看到养鱼水体pH值偏低,又没有外来的特殊污染,就可以判断这个水体有可能硬度偏低,腐殖质过多,二氧化碳偏高和溶氧量不足,同时也可以判断这一水体植物光合作用不旺盛,或者养殖生物密度过大,或微生物代谢受到抑制,整个物质代谢、系统代谢缓慢。

养鱼水环境中的微生物除了对养鱼具有利的一面外,也具有害的一面。如水体环境及鱼体内外或多或少地存在着一些致病微生物,这些致病微生物中多数为条件致病菌,它们虽然存在而并不发病,但其致病力随着环境不良因素的增加而增强。当环境条件恶化时,鱼体受损伤及抵抗力减弱都会使致病菌的毒性增强,对鱼体的组织器官造成损害,发生病理变化。此外,致病菌数量的多少也与致病有一定的关联,而是否发病,又取决于致病菌本身的致病力和机体抵抗力的强弱。

②氨氮对水体环境的影响:

①硫化氢产生的原因:

溶解氧。

浮游生物。

③养鱼水体中硫化氢的限制浓度:

①水体中溶解氧的来源:

附生藻类是附生在养鱼水体底泥表面,呈蓝绿、绿褐、黄褐等颜色特征的藻类,如蓝藻、硅藻和绿藻等。养殖水体在夏季出现水质老化时,常见的附生在水底的青泥苔也属于附生藻类。天气炎热时,这些藻类常与接触的底泥一起浮至水面,成为许多片状浮泥。附生藻类是细鳞斜颌鲴、黄尾密鲴等鲴亚科鱼类的天然食料。

②水温对鱼类的影响:

①水体氨氮的来源:

浮游生物的多寡与养鱼水体的水色及肥度有关,所以在养鱼生产过程中,可通过观察水色及其变化来大致了解浮游生物的数量情况,据此判断水质的肥瘦和好坏,这对指导渔业生产很有帮助。

我国渔业水质标准规定硫化物的浓度不超过0.2毫克/升,但对于有些鱼类或在苗种养殖阶段,硫化物的浓度应在0.1毫克/升以下。养鱼水体中有硫化氢产生也是水底缺氧的标志。

对于深水养鱼水体来说,夏季突然下雨时,水温分层现象可能会导致严重的死鱼事故。因为下雨可能使上层水水温下降,且容易与下层贫氧水层混合,贫氧层中的可分解耗氧物质也在整个池塘中充分混合,从而导致整个池塘溶解氧水平降低。这种现象刚发生时,鱼可主动避开贫氧层,而后来只能受低溶解氧和其他有害物质的伤害,最后可能导致死亡。

我国鲢、鳙、草、青、鲤、鲫、鲂等淡水鱼类,其生长适温范围在20~32℃,最适生长水温为25~28℃。

鱼类是变温动物,其体温随水温的变化而变化,通常鱼体温度与水温之间的温差在±1℃。水温直接影响鱼的生存和生长,因此,从事水产养殖,需要了解水温的变化特点及其在水环境中的作用。

浮游植物又称“藻类”,是养鱼水环境中鱼类生物饵料的重要组成部分。不同类型的养鱼水体在不同季节,藻类的组成是不同的,各种藻类的相对量也在不断变化。对于滤食性的鲢、鳙的鱼苗、鱼种而言,又有易消化种类与难消化种类之分。一般来说,硅藻门、金藻门、甲藻门中的种类易消化;而蓝藻门、绿藻门、裸藻门中的多数种类难以消化。

地表水体的水温随季节与气温变化而变化。

池塘水体,透明度在20~40厘米,水中浮游生物通常较丰富,有利于鲢、鳙的生长;透明度大于这一范围,则表示水较瘦,浮游生物量较少,对鲢、鳙等鱼类生长均不利;透明度低于20厘米,则显示水质过肥,需要加注新水。养鱼水体一般要求透明度在30厘米。

当氨氮达到0.05~0.2毫克/升时,鱼类生长速度会下降;当浓度达0.5毫克/升时,产量减半,所以氨氮成为限制放养密度的因素之一。底层水缺氧,有机物发生厌氧分解,也会使氨积累,因此提高底层水的溶氧量是防止氨积累和改良水质的重要措施。

对鱼类养殖水体而言,透明度的大小,大体可以表示水中浮游生物量的多少和水质肥瘦的程度。养鱼经验丰富的人,通常根据水体透明度的大小判断水质肥瘦,决定改善水质的方法。因此,透明度是水质中一项很有价值的指标。

浮游生物系指生活在水体中,自身完全没有移动能力,或者有也非常弱,随波逐流地浮在水表层生活的生物总称。浮游生物多种多样,淡水中主要包括浮游植物、浮游动物和浮游细菌三大类,其中与养鱼关系最为直接的是浮游动物和浮游植物。

水温直接影响鱼类的代谢强度,从而影响鱼类的摄食和生长。不同种类的鱼类各有自身适温范围和最适温度范围。在最适温度范围,鱼类的代谢相应加强,摄食量增加,生长加快;在不适宜温度条件下,鱼类不仅生长受到影响,还会出现异常反应,甚至死亡。

亚硝酸盐是氨转化为硝酸盐过程中的中间产物,故亚硝基态氮极不稳定。它在微生物作用下,当氧气充足时,可转化为对鱼毒性较低的硝酸盐;在缺氧时转为毒性强的氨氮。

在夏季高温季节:

氨是含氮有机物分解的第一产物,是水中植物的营养物质,水体中氨氮的升高可导致水富营养化现象的产生,它是水体中的主要耗氧污染物,是造成水体富营养化的主要环境因素。

生活在江河、湖泊、水库和池塘等水体底部,如常见的螺、蚌、河蚬、水生昆虫、水蚯蚓等动物,统称“底栖动物”。底栖动物肉眼可见,它们多数是青鱼、鲤鱼等的良好食料,在内陆天然水体,底栖动物是渔业生产力的重要组成部分。此外,螺、蚌等软体动物还是良好的水质“净化器”;在养鱼的池塘,底栖动物也是青、鲤、鲫鱼等鱼类的良好食料,但与浮游生物相比,其对池塘生产力的作用就相差较远。在肥水性养鱼池塘,螺、蚌等软体动物不利于水质变肥,有些种类还是一些鱼类寄生虫的中间寄主;水生昆虫的有些种类则是鱼苗的敌害,必须消灭。

钙、镁等碳酸盐类,是形成水硬度的主要物质。

酸碱度。

“爽”就是水质清爽,水面无浮膜,浑浊度较小,透明度一般大于20~25厘米,水中含氧量较高。

底栖动物。

水体的底质状况也能影响到透明度:水浅而底质又多淤泥的水体较混浊,透明度较小;水底底质硬或有较多的贝壳、石砾,则水质较清,透明度较大;此外,刮风、降水和水的流动速度也会影响到水体的混浊度和透明度。浅水湖泊、水库以及水流缓慢的小型河流,水中含有的泥沙等物质不多,其透明度主要受浮游生物密度的影响。

④水温对池水中溶解氧的影响:

从国外引进的引进的罗非鱼,生存温度范围为15~35℃,最适生长温度为28~32℃。当水温低于15℃时,罗非鱼躲于水底,不摄食,少动。